Sunday, 7 October 2012

Storing electrical energy in liquid air.



Turning air into liquid may offer a solution to one of the great challenges in engineering - how to store energy. The Institution of Mechanical Engineers says liquid air can compete with batteries and hydrogen to store excess energy generated from renewables.  IMechE says "wrong-time" electricity generated by wind farms at night can be used to chill air to a cryogenic state at a distant location. When demand increases, the air can be warmed to drive a turbine.

Engineers say the process to produce "right-time" electricity can achieve an efficiency of up to 70%. IMechE is holding a conference today to discuss new ideas on how using "cryo-power" can benefit the low-carbon economy. 

The technology was originally developed by Peter Dearman, a garage inventor in Hertfordshire, to power vehicles. A new firm, Highview Power Storage, was created to transfer Mr Dearman's technology to a system that can store energy to be used on the power grid. The process, part-funded by the government, has now been trialled for two years at the back of a power station in Slough, Buckinghamshire.

You can see a video of the engine at http://www.youtube.com/watch?v=NOImbv_xcT8

I've posted about this because this technology for storing electrical energy might also be applicable to electricity generated by Bessler's wheel.

JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Wednesday, 3 October 2012

The tax advantages of the Bessler automobile.

What follows is speculation based on numbers obtained from a variety of sources and they may be open to question but the basic argument  remains unaffected by any discrepancies later revealed.

I had to fill up my car's fuel tank today and it cost me £75, or $120 US dollars.  Petrol or gas costs upwards of  £1.36 per litre here in the UK, which works out at £5.14 per US gallon, or $8.20.  Suppose that one of us succeeds in replicating Bessler's wheel and further development eventually results in an automobile engine that can replace the traditional internal combustion engine..  

In the UK, about £27.3 billion was raised through fuel tax in 2010/11, so if our little enterprise should result in the eventual demise of the old gasoline engine, or at least to its reduction to an insignificant level, where will the government be looking to find their missing billions? Not hard to guess!  Scary as this thought is, it is going to happen sooner or later regardless of which engine replaces the current ones.  So I'm sure that somewhere some accountant has already worked out how to screw similar amounts from the poor old taxpayer.

I suspect numerous road tolls will proliferate - we don't have many currently, here in the UK - and maybe an annual tax, or excise duty, will be applied to each car, just to be allowed to use it on the roads.  But even if that happens will they find the £27 billions from the, roughly, 31 million cars on the British roads?  And that is a falling figure.  That works out at approximately £840 or $1344 per annum from each driver.  All they (the government) have to do is slap a £1000, or $1600, tax on every car using Bessler's wheel - every year -  and they're covered!  However although that sounds like highway robbery think of the savings in not having to buy fuel.  In 2010 it was calculated that we spent about £1500 a year on fuel for our cars, so there's saving of £500 already!

Of course the Bessler engine will (should) be simpler and cheaper to buy as well as to run, so perhaps it will work out even better for us in the long run...and very much greener.

This is not too serious a comment, just a bit of musing for those interested in the possible long term  potential ramifications of replicating Bessler's wheel.

JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Monday, 1 October 2012

The purpose of the waxed linen covering and pivot points


Bessler is said to have covered his wheel with waxed-linen. Considering this fact led me on an interesting mental ramble.  

The German words used to describe the cloth covering in Das Triumphirende is leinwand which means canvas/linen/fabric. The other German words used are Ć¼berzogen, which means  covered/drawn-over; and Ć¤usserlicht meaning external/outside.  OK, but in the Latin text he uses the words linteo = linen, cerato = waxed, and vestito = covered/clothed.  So I'm assuming it was waxed linen or canvas.

When I build a test model, I fix everything to a single disc, mounted on a free-spinning axle. The disc is made of medium density fibreboard (MDF) and I can drill holes and fix pivot points and add stops easily.  The only difficulties arise if I need a lever to pass over the top of another pivot point, or another lever with a weight attached to the end.  In those cases the pivot point has to be made shorter to allow the passing lever to pass over it and not get stopped too soon.  It's a bit like watching the hour hand pass over the minute hand of a clock, the hour hand has be nearer the clock face than the minute hand, so it can easily pass over it.


This is all fine and well until you wish to build a more substantial model that will do work - or you need to exhibit it and wish to cover the inner workings.  The obvious thing is to attach another disc to the axle to cover the mechanism and this requires all those pivot points to be attached at their outer ends to the new disc.  Those pivot points that you shortened now need to be repositioned because if you don't they will obstruct the passage of the other lever you had designed to pass over it.  It takes time and trial and error to achieve the new positions without affecting the continued operation of the mechanism and these new positions explain, for me, some of the mysteries about Bessler's drawings.

As for the waxed linen, I think the purpose of using it to cover the sides of the wheel was to hide any clues the spectators might get from seeing the placing of the various pivot points and other fixings.  Without the covering of the waxed linen the positions of all the pivot points would be visible to the examiners and therefore potentially offer clues as to their purpose and action.  

Also, he is said to have introduced a flap in the cloth which gave him access to the interior so that he could remove the weights prior to moving the wheel from one support to another.  But here is another mystery.  To get all the weights out, or at least to get all the weights he could reach, out, he would surely need several flaps?  They couldn't have all been accessible from one position in a twelve foot diameter wheel.  He must had to lock and unlock the wheel as he removed the weights otherwise it would spin until balanced again.  Maybe he had one flap at each weight access point?  It is a pity nobody counted the flaps.

But ... he might have accessed the weights by unbuttoning the edge of the linen, then he wouldn't need a special flap.

JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Thursday, 27 September 2012

Could a carpenter's apprentice really have understood how Bessler's wheel worked?


Johann Fischer von Erlach, in his letter to Sir Isaac Newton's curator of experiments, Desaguliers, wrote of Karl, that "His Highness, who has a perfect understanding of mathematics, assured me that the machine is so simple that a carpenter's boy could understand and make it after having seen the inside of this wheel, and that  he would not risk his name in giving these attestations, if he did not have knowledge of the machine."

Now that is a misleading statement, in my opinion - it wasn't meant to be, but that is how it has turned out.  The problem is that he uses the word 'understand', suggesting that a carpenter's boy could make it after having studied the inside.  The implication being that it is simple and obvious, even to a young inexperienced apprentice.  Apparently Karl declared that he understood it too, sufficiently to risk his good name in saying it was genuine. But if the machine was so easy to understand why has no one thought of the way to replicate what Bessler did, in the 300 years since he proved it was possible?  I think the reason is because there is a principle involved which was overlooked by everyone including Karl.

I think that Karl understood the mechanism but did not appreciate the whole process it underwent in rotating the wheel continuously. This is difficult for me to explain, but I'll try. If I had been able to look at the mechanism in Bessler's wheel and I saw a weighted lever, for example, falling outwards or inwards and in doing so lifting another lever, I might well understand what I was seeing.  I would make an assumption based on what I knew, but if there were restrictions on what could be achieved by the first lever because it might be insufficient to lift the second lever enough, then perhaps a spring attached to the lever being lifted, to assist in the initial lift might be required - but would I have seen the spring?  If I hadn't then I might think the first lever easily lifted the second one; but if I did noticce it, would I make the right interpretation of its use?  And yet without the spring the whole thing might fail.

Having said that I don't think that springs were used in that way in Bessler's wheel.  But I do think that Karl's understanding of the wheel's mechanism was incomplete.  I have good reason for reaching this opinion as I have found a number of intricate requirements and restrictions for the mechanism which are identified in Bessler's drawings but which are not easily recognised without actually building the assemblies - and this, by the way, is the main reason why I think that the efforts to achieve success through simulation alone are doomed to failure.

The second thing is that whatever each mechanisms did, it had to be reversed or reset in order to operate again, to continue the wheel's rotation, but did Karl actually see this other part of the action?  Perhaps Bessler simply said that the action was reversed on the other side of the wheel, but perhaps there were actions which only ocurred on the resetting side of the wheel - in fact, as I have discovered, there were.

Finally, we don't know which wheel Bessler showed to Karl, but I can't really believe that Karl would have waited for six months to allow Bessler time to build the big wheel, before giving the device his blessing, so he must have seen a smaller portable version of the wheel, and this would most likely have been the one-way wheel - a more simple device. 

So I think that Karl was not made aware of this unknown principle which permitted the wheel to work within the current laws of physics. He may have seen it in action but not understood the restrictions imposed on its actions. I know this principle but have not yet incorporated it within a wheel.  I have designed and built a mechanism that performs according to the principle - it does what it's designed to do.  I know people will say that there cannot be a secret principle which obeys the laws of physics and yet works a gravity-only wheel but there is.  It doesn't conflict with any law and the fact that gravity is said to be conservative does not enter into the equation.

JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Did Bessler’s Perpetual Motion Machine Arrive Before ItsTime?

There has been some discussion about the potential power available from Bessler’s wheel.  Comparisons have been made between the Merseburg w...