Friday, 19 October 2012

Petrol from Air!

This morning's news reveals that a British company is making petrol from fresh air!  There are a number of articles about it, for instance this one http://www.telegraph.co.uk/earth/energy/fuel/9619269/British-engineers-produce-amazing-petrol-from-air-technology.html

'The “petrol from air” technology involves taking sodium hydroxide and mixing it with carbon dioxide before "electrolysing" the sodium carbonate that it produces to form pure carbon dioxide.

Hydrogen is then produced by electrolysing water vapour captured with a dehumidifier. The company, Air Fuel Syndication, then uses the carbon dioxide and hydrogen to produce methanol which in turn is passed through a gasoline fuel reactor, creating petrol.

Company officials say they had produced five litres of petrol in less than three months from a small refinery in Stockton-on-Tees, Teesside.

The fuel that is produced can be used in any regular petrol tank and, if renewable energy is used to provide the electricity it could become “completely carbon neutral”.
The £1.1m project, in development for the past two years, is being funded by a group of unnamed philanthropists who believe the technology could prove to be a lucrative way of creating renewable energy.'

At first sight this looks as though it might spell doom for Bessler's wheel, however, the process has to be a viable commercial operation to succeed and to produce just 5 litres in 2 months does not seem too awe inspiring, but then this is just a test facility and something much larger looms on the horizon.

Can they produce petrol at a better rate than the current rate for a barrel of oil (42 US gallons and about 35 UK gallons) which is currently between $92 and $112 per barrel?  Possibly, but the governments will still tax it to death.  Of course the same goes for Bessler's wheel but it is the greener option, despite the claims that this new process is greener than anything so far produced.  The carbon-neutral aspect of it could be supplied by Bessler's wheel and an electricity generator.

We must await developments meanwhile, on with the build!

JC

Monday, 15 October 2012

Johann Bessler's wheel was ahead of its time.


We routinely discuss the various tests that Bessler's wheel was subjected to, such as the 70 pound lifting test, the translocation to a second set of bearings, the 54 day endurance test and the turning of the archimedes pump. Plus, the ability of the latter two wheels to turn in either direction... and there were numerous examination carried out over the twelve years or so, most likely executed by persons determined to prove the alleged scoundrel a fake, but no one succeeded, hence our view that he was genuine.  

I was considering what other tests Bessler might have included to try to prove his machine was genuine and I couldn't think of any.  In Gründlicher Bericht he describes the possible uses his machine could be put to, such as driving a mill wheel, cable making, glass or stone polishing, alloying, laundry and bleaching, in clocks and machinery associated with hydraulics; pumping water for various uses. I don't think that any of these could easily be added to the ones he demonstrated at the castle.

I have always assumed that during his two meetings with Gottfried Leibniz, Bessler asked what tests the latter could recommend he arrange, and perhaps the endurance test would have been suggested, along with the advice to ensure the wheel bearings did not seize up, perhaps by slowing the wheel down. They might have also discussed the ones described in the previous paragraph, but I think they were probably dismissed as unworkable or not worth the trouble?

As far as I can see the only additional possibility available to him, was to find a man of unimpeachable reputation for absolute integrity who, having seen the interior of the machine, could vouch for its validity  - and Bessler found that man in Karl, the Landgrave of Hesse-Kassel.  

This leads me on to another thought.  In those suggested uses Bessler provides in his Gründlicher Bericht, there isn't really one that could be put to beneficial use in place of the existing methods used at that time.  Pumping water out of mines seems to me to hold the most potential but there was competition in the form of the steam engines of Savery and Newcomen.  But Savery's engine was limited to a depth of 10 meters (just over 30 feet) and Newcomen's, operating huge pistons, eventually prevailed.  

But these machines were steam driven.  It is hard to imagine Bessler's wheel drawing up much water by means of an archimedes pump!  No wonder Karl did not buy it for his cascade.  All cascades and fountains of the time were gravity-fed from a number of reservoirs on the top of the hill ... how ironic!

I think that Bessler failed to sell his machine for the simple reason that his invention was ahead of its time. Many inventions are conceived simultaneously by several different persons because the time is "right", meaning that a technical and scientific foundation exists and that there is demand and business potential for the invention, but Bessler's wheel came at a time when there was no way of using it to pump water.  Piston pumps using one way valves had existed but they were few and far between and too small for Karl's cascade. Now, however, the conditions are perfect for Bessler's wheel as an electricity generator  and all the other things we can imagine; I suspect it will be discovered simultaneously by different individuals from many different places, because the conditions for its entry into the modern world are right.at last.

JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Sunday, 14 October 2012

Parametric oscillation applied to Bessler's wheel.

I recently posted a response to a comment, pointing out that I had been recommending the study of parametric oscillation as an aid to solving Bessler's wheel, on the undermentioned web site for some years.  I was surprised therefore, to receive a number of emails telling me that they had never been to the website as they didn't know about it!

This has surprised me, as all the links to my websites are there in the side panel to your right as you are reading this.

I guess that the problem lies in the similarity of the domain name with Scott Ellis's besslerwheel.com website, which is an excellent site with a forum dedicated to Bessler.  People may have thought it was a link to his web site and having been there already, ignored it.  My domain name has an 's' on the end of 'Bessler', and his doesn't.

So just to be clear,  the website details my theory about how Bessler's wheel worked using parametric oscillation, or swinging, and I describe 'kiiking', an Estonian version of swinging which in my opinion provides additional information.


JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Wednesday, 10 October 2012

Bessler's wheel was not just a toy.

I think it's time to question the apparently widespread assumption that Bessler's wheel, which, while it might make an interesting toy, could not generate  any useful electrical power because it would be too puny.

The Kassel wheel was just over eleven feet in diameter and eighteen inches thick and, with a rope wrapped around the eight inch axle, it could raise a box of stones weighing seventy pounds.  The Merseberg wheel, which was a similar diameter but only one foot thick could also raise the same weight of seventy pounds. Both wheels could turn in either direction but the Merseburg turned at 40-50 RPM whereas the Kassel one achieved a maximum of 26 RPM.  

Wolff describes how the Merseburg lifted the 70 pounds through a pulley which had to be reduced more than four times, making the lifting quite slow. Now on the face of it this would indicate that the wheel was barely able to lift the seventy pounds, however it may also indicate that Bessler wanted a slow lift to make more impact on his audience.  At 40 - 50 RPM the lift would be over too quickly and would require him to lower it and relift it too often or too soon.

If, as I have often suggested, in the two-way wheels, the driving mechanisms are mirrored within the wheel to provide rotation in each direction, logically the one-way wheels had more power than the two-way versions. This is because the redundant mechanisms in the latter, would have to be turned in the wrong direction and must therefore have added resistance to rotation.

The narrower Merseburg wheel was designed to spin faster than the larger Kassel wheel, and yet was capable of raising the same weight of seventy pounds, aided by the load-reducing pulleys - there was no record of the pulleys being used on the Kassel wheel.  .I suggest that Bessler deliberately designed the Kassel wheel to turn more slowly, and I have argued previously that this was done in order to allow it to complete the long endurance test with out fear of it stopping prematurely due to wear and tear. It seems reasonable to assume that the internal design of each machine differed in some way, and it will be recalled that Bessler mentioned in Apologia Poetica, "if I arrange to have just one cross-bar in the machine it revolves very slowly, just as if it can hardly turn itself at all, but on the contrary, if I arrange several bars, pulleys and weights, the machine can revolved muster faster." So perhaps the Kassel wheel had fewer cross-bars but then Bessler added more weight to compensate for the reduction in power.  These would be added in line sideways or horizontally, leading to the increased depth or thickness of the wheel.

The second wheel was nine feet in diameter and only six inches thick and yet it turned at 50 RPM too - as did the first one which was only four feet wide and four inches thick - it seems as though 50 RPM was the normal spin speed.

Bessler said that he could design his wheels to turn fast or slow with greater or lesser power.  We can believe him because he showed it with the four wheels he exhibited, and of course he hadn't sold one at the time of writing, so his integrity would have been called into question if he could not do as he claimed.

It's worth pointing out the limitations within which Bessler worked.  70 pounds was probably the most he would want to handle during his exhibitions. Also the rope used to lift the weight had to be thin enough for use in the pulleys and yet have sufficiently high breaking strain to lift 70 pounds, probably not a problem.  He repeated his lifting and translocation demonstrations many times and most likely tried to make it as easy for himself as possible, hence the extended slow lifts.

One more thing; any engine can be scaled up to produce more power and this applies to Bessler's wheel just as in other instances.  This being the case it stands to reason that there is much more potential power to be had from Bessler's wheel than anyone seems prepared to admit.

JC

10a2c5d26e15f6g7h10ik12l3m6n14o14r5s17tu6v5w4y4-3,’.

Johann Bessler’s Coded Secret Information is Ignored.

I expect everyone knows I believe Bessler’s wheel had five mechanisms.  Before you move on and dismiss what I’m going to write, just hang on...